Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
preprints.org; 2023.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202307.1362.v1

ABSTRACT

The COVID-19 pandemic caused by the SARS-CoV-2 virus has inflicted significant mortality and morbidity worldwide. Continuous virus mutations have led to the emergence of new variants. The Omicron BA.1 sub-lineage prevailed as the dominant variant globally at the beginning of 2022 but was subsequently replaced by BA.2 in numerous countries. Wastewater-based epidemiology (WBE) offers an efficient tool for capturing viral shedding from infected individuals, enabling early detection of potential pandemic outbreaks without relying solely on community cooperation and clinical testing resources. This study integrated RT-qPCR assays for detecting general SARS-CoV-2 and its variants levels in wastewater into a modified triple susceptible-infected-recovered-susceptible (SIRS) model. The emergence of the Omicron-BA.1 variant was observed, replacing the presence of its predecessor, the Delta variant. Comparative analysis between the wastewater data and the modified SIRS model effectively described the BA.1 and subsequent BA.2 waves, with the decline of the Delta variant aligning with its diminished presence below the detection threshold in wastewater. This study demonstrates the potential of WBE as a valuable tool for future pandemics. Furthermore, by analyzing the sensitivity of different variants to model parameters, we are able to deduce real-life values of cross-variant immunity probabilities, emphasizing the asymmetry in their strength.


Subject(s)
COVID-19 , Disease Susceptibility
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.08.15.21262074

ABSTRACT

During the COVID-19 pandemic authorities have been striving to obtain reliable predictions for the spreading dynamics of the disease. We recently developed a multi-”sub-populations” (multi-compartments: susceptible, exposed, pre-symptomatic, infectious, recovered) model, that accounts for the spatial in-homogeneous spreading of the infection and shown, for a variety of examples, how the epidemic curves are highly sensitive to location of epicenters, non-uniform population density, and local restrictions. In the present work we test our model against real-life data from South Carolina during the period May 22 to July 22 (2020). During this period, minimal restrictions have been employed, which allowed us to assume that the local basic reproduction number is constant in time. We account for the non-uniform population density in South Carolina using data from NASA, and predict the evolution of infection heat-maps during the studied period. Comparing the predicted heat-maps with those observed, we find high qualitative resemblance. Moreover, the Pearson’s correlation coefficient is relatively high thus validating our model against real-world data. We conclude that the model accounts for the major effects controlling spatial in-homogeneous spreading of the disease. Inclusion of additional sub-populations (compartments), in the spirit of several recently developed models for COVID-19, can be easily performed within our mathematical framework.


Subject(s)
COVID-19
3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.08.20148767

ABSTRACT

We suggest a mathematical model for the spread of an infectious disease in human population, with particular attention to the COVID-19. Common epidemiological models, e.g., the well-known susceptible-exposed-infectious-recovered (SEIR) model, implicitly assume fast mixing of the population relative to the local infection rate, similar to the regime applicable to many chemical reactions. However, in human populations, especially under different levels of quarantine conditions, this assumption is likely to fail. We develop a continuous spatial model that includes five different populations, in which the infectious population is split into latent (or pre-symptomatic) and symptomatic. Based on nearest-neighbor infection kinetics, we arrive into a "reaction-diffusion" model. Our model accounts for front propagation of the infectious population domains under partial quarantine conditions, which is present on top of the common local infection process. Importantly, we also account for the variable geographic density of the population, that can strongly enhance or suppress infection spreading. Our results demonstrate how infected domains spread outward from epicenters/hotspots, leading to different regimes of sub-exponential (quasi linear or power-law) growth. Moreover, we show how weakly infected regions surrounding a densely populated area can cause rapid migration of the infection towards the center of the populated area. Predicted heat-maps show remarkable similarity to recently media released heat-maps. We further demonstrate how localized strong quarantine conditions can prevent the spreading of the disease from an epicenter/hotspot, significantly reducing the number of infected people. Application of our model in different countries, using actual demographic data and infectious disease parameters, can provide a useful predictive tool for the authorities, in particular, for planning strong lockdown measures in localizes areas.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL